Trigonometrical Equations 1 Question 9

9. If 5(tan2xcos2x)=2cos2x+9, then the value of cos4x is

(2017 Main)

(a) 35

(b) 13

(c) 29

(d) 79

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. Given, 5(tan2xcos2x)=2cos2x+9

52sin2x2cos2xcos2x=2cos2x+9

51cos2x1+cos2x1+cos2x2=2cos2x+9

Put cos2x=y, we have

51y1+y1+y2=2y+95(22y1y22y)=2(1+y)(2y+9)5(14yy2)=2(2y+9+2y2+9y)520y5y2=22y+18+4y29y2+42y+13=09y2+3y+39y+13=03y(3y+1)+13(3y+1)=0(3y+1)(3y+13)=0y=13,133cos2x=13,133cos2x=13cos2x133

2cos2xcosx+2cos3xcosx=0
2cosx(cos2x+cos3x)=0
2cosx2cos5x2cosx2=0
cosxcos5x2cosx2=0
c (cosx=0 cos5x2=0)
cosx2=0
ow, cosx=0
(x=π2,3π2[0x<2π] cos5x2=0)
5x2=π2,3π2,5π2,7π29π2,11π2
x=π5,3π5,π,7π5,9π5[0x<2π]
and cosx2=0
x2=π2,3π2,5π2,
[0x<2π]
ence, x=π2,3π2,π,π5,3π5,7π5,9π5

Now, cos4x=2cos22x1

=21321=291=79



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक