Theory of Equations 5 Question 15

15. The positive value of $k$ for which $k e^{x}-x=0$ has only one root is

(a) $\frac{1}{e}$

(b) 1

(c) $e$

(d) $\log _e 2$

Show Answer

Answer:

Correct Answer: 15. (a)

Solution:

  1. Let $f(x)=k e^{x}-x$

$ \begin{aligned} & & f^{\prime}(x) & =k e^{x}-1=0 \\ \Rightarrow \quad & & x & =-\ln k \end{aligned} $

$ \begin{aligned} f^{\prime \prime}(x) & =k e^{x} \\ \therefore \quad\left[f^{\prime \prime}(x)\right] _{x=-\ln k} & =1>0 \end{aligned} $

Hence, $\quad f(-\ln k)=1+\ln k$

For one root of given equation

$1+\ln k=0$

$\Rightarrow \quad k=\frac{1}{e}$



NCERT Chapter Video Solution

Dual Pane