Theory of Equations 1 Question 40

41. If $2+i \sqrt{3}$ is a root of the equation $x^{2}+p x+q=0$, where $p$ and $q$ are real, then $(p, q)=(\ldots, \ldots)$.

(1982, 2M)

Show Answer

Answer:

Correct Answer: 41. (-4,7)

Solution:

  1. If $2+i \sqrt{3}$ is one of the root of $x^{2}+p x+q=0$. Then, other root is $2-i \sqrt{3}$.

$\Rightarrow -p =2+i \sqrt{3}+2-i \sqrt{3}=4 $

$\text { and } q =(2+i \sqrt{3})(2-i \sqrt{3})=7 $

$\Rightarrow (p, q) =(-4,7)$



NCERT Chapter Video Solution

Dual Pane