Theory of Equations 1 Question 4

4. If $\alpha$ and $\beta$ are the roots of the equation $x^{2}-2 x+2=0$, then the least value of $n$ for which $\frac{\alpha}{\beta}{ }^{n}=1$ is

(a) 2

(b) 5

(c) 4

(d) 3

(2019 Main, 8 April I)

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. Given, $\alpha$ and $\beta$ are the roots of the quadratic equation,

$ \Rightarrow \quad \begin{array}{ll} x^{2}-2 x+2=0 \\ & (x-1)^{2}+1=0 \end{array} $

$ \begin{array}{lc} \Rightarrow & (x-1)^{2}=-1 \\ \Rightarrow & x-1= \pm i \\ \Rightarrow & x=(1+i) \text { or }(1-i) \end{array} $

Clearly, if $\alpha=1+i$, then $\beta=1-i$

According to the question $\frac{\alpha}{\beta}{ }^{n}=1$

$\Rightarrow \quad \frac{1+i^{n}}{1-i}=1$

$\Rightarrow \quad \frac{(1+i)(1+i)}{(1-i)(1+i)}^{n}=1 \quad$ [by rationalization]

$\Rightarrow \quad \frac{1+i^{2}+2 i}{1-i^{2}}{ }^{n}=1 \Rightarrow \frac{2 i}{2}^{n}=1 \Rightarrow i^{n}=1$

So, minimum value of $n$ is 4 .

$\left[\because i^{4}=1\right]$



NCERT Chapter Video Solution

Dual Pane