Theory of Equations 1 Question 4

4. If $\alpha$ and $\beta$ are the roots of the equation $x^{2}-2 x+2=0$, then the least value of $n$ for which $\frac{\alpha}{\beta}{ }^{n}=1$ is

(a) 2

(b) 5

(c) 4

(d) 3

(2019 Main, 8 April I)

Show Answer

Solution:

  1. Given, $\alpha$ and $\beta$ are the roots of the quadratic equation,

$$ \Rightarrow \quad \begin{array}{ll} x^{2}-2 x+2=0 \\ & (x-1)^{2}+1=0 \end{array} $$

$$ \begin{array}{lc} \Rightarrow & (x-1)^{2}=-1 \\ \Rightarrow & x-1= \pm i \\ \Rightarrow & x=(1+i) \text { or }(1-i) \end{array} $$

Clearly, if $\alpha=1+i$, then $\beta=1-i$

According to the question $\frac{\alpha}{\beta}{ }^{n}=1$

$\Rightarrow \quad \frac{1+i^{n}}{1-i}=1$

$\Rightarrow \quad \frac{(1+i)(1+i)}{(1-i)(1+i)}^{n}=1 \quad$ [by rationalization]

$\Rightarrow \quad \frac{1+i^{2}+2 i}{1-i^{2}}{ }^{n}=1 \Rightarrow \frac{2 i}{2}^{n}=1 \Rightarrow i^{n}=1$

So, minimum value of $n$ is 4 .

$\left[\because i^{4}=1\right]$

Key Idea

(i) First convert the given equation in quadratic equation.

(ii) Use, Discriminant, $D=b^{2}-4 a c<0$

Given quadratic equation is

$$ \left(1+m^{2}\right) x^{2}-2(1+3 m) x+(1+8 m)=0 $$

Now, discriminant

$$ \begin{aligned} D & =[-2(1+3 m)]^{2}-4\left(1+m^{2}\right)(1+8 m) \\ & =4\left[(1+3 m)^{2}-\left(1+m^{2}\right)(1+8 m)\right] \\ & =4\left[1+9 m^{2}+6 m-\left(1+8 m+m^{2}+8 m^{3}\right)\right] \\ & =4\left[-8 m^{3}+8 m^{2}-2 m\right] \\ & =-8 m\left(4 m^{2}-4 m+1\right)=-8 m(2 m-1)^{2} \end{aligned} $$

According to the question there is no solution of the quadratic Eq. (i), then

$$ \begin{aligned} D & <0 \\ \therefore \quad-8 m(2 m-1)^{2} & <0 \quad \Rightarrow \quad m>0 \end{aligned} $$

So, there are infinitely many values of ’ $m$ ’ for which, there is no solution of the given quadratic equation.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक