Theory of Equations 1 Question 26

27. The number of solutions of $\log _4(x-1)=\log _2(x-3)$ is

(a) 3

(b) 1

(c) 2

(d) 0

(2001, 2M)

Show Answer

Answer:

Correct Answer: 27. (b)

Solution:

  1. Given, $\log _4(x-1)=\log _2(x-3)=\log _{4^{1 / 2}}(x-3)$

$ \begin{array}{rlrl} \Rightarrow & \log _4(x-1) =2 \log _4(x-3) \\ \Rightarrow & \log _4(x-1) =\log _4(x-3)^{2} \\ \Rightarrow & (x-3)^{2} =x-1 \\ \Rightarrow & x^{2}+9-6 x =x-1 \\ \Rightarrow & x^{2}-7 x+10=0 \\ \Rightarrow & (x-2)(x-5)=0 \\ \Rightarrow & x=2, \text { or } x=5 \\ \Rightarrow & x=5 \quad[\because x=2 \text { makes log }(x-3) \text { undefined }] . \end{array} $

Hence, one solution exists.



NCERT Chapter Video Solution

Dual Pane