Theory of Equations 1 Question 26

27. The number of solutions of $\log _4(x-1)=\log _2(x-3)$ is

(a) 3

(b) 1

(c) 2

(d) 0

(2001, 2M)

Show Answer

Solution:

  1. Given, $\log _4(x-1)=\log _2(x-3)=\log _{4^{1 / 2}}(x-3)$

$$ \begin{array}{rlrl} \Rightarrow & \log _4(x-1) & =2 \log _4(x-3) \\ \Rightarrow & & \log _4(x-1) & =\log _4(x-3)^{2} \\ \Rightarrow & & (x-3)^{2} & =x-1 \\ \Rightarrow & x^{2}+9-6 x & =x-1 \\ \Rightarrow & & x^{2}-7 x+10=0 \\ \Rightarrow & & (x-2)(x-5)=0 \\ \Rightarrow & x=2, \text { or } x=5 \\ \Rightarrow & & x=5 \quad[\because x=2 \text { makes log }(x-3) \text { undefined }] . \end{array} $$

Hence, one solution exists.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक