Sequences and Series 3 Question 12
12.
If $a, b, c$ are in GP, then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
(1985, 2M)
(a) $AP$
(b) $GP$
(c) $HP$
(d) None of these
Show Answer
Answer:
Correct Answer: 12. (a)
Solution:
- Since, $a, b, c$ are in GP.
$\Rightarrow \quad b^{2}=a c$
Given, $\quad a x^{2}+2 b x+c=0$
$\Rightarrow \quad a x^{2}+2 \sqrt{a c} x+c=0$
$\Rightarrow \quad(\sqrt{a} x+\sqrt{c})^{2}=0 \Rightarrow x=-\sqrt{\frac{c}{a}}$
Since, $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have common root.
$\therefore \quad x=-\sqrt{c / a}$ must satisfy.
$ d x^{2}+2 e x+f =0 $
$ \Rightarrow d \cdot \frac{c}{a}-2 e \sqrt{\frac{c}{a}} +f=0 \Rightarrow \frac{d}{a}-\frac{2 e}{\sqrt{a c}}+\frac{f}{c}=0 $
$ \Rightarrow \frac{2 e}{b} =\frac{d}{a}+\frac{f}{c} \quad\left[\because b^{2}=a c\right]$
Hence, $\quad \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in an AP.