Sequences and Series 3 Question 12

12. If $a, b, c$ are in GP, then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in

(1985, 2M)

(a) $AP$

(b) GP

(c) HP

(d) None of these

Show Answer

Answer:

Correct Answer: 12. $(a=5)(b=8)(c=12)$

Solution:

  1. Since, $a, b, c$ are in GP.

$\Rightarrow \quad b^{2}=a c$

Given, $\quad a x^{2}+2 b x+c=0$

$\Rightarrow \quad a x^{2}+2 \sqrt{a c} x+c=0$

$\Rightarrow \quad(\sqrt{a} x+\sqrt{c})^{2}=0 \Rightarrow x=-\sqrt{\frac{c}{a}}$

Since, $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have common root.

$\therefore \quad x=-\sqrt{c / a}$ must satisfy.

$\begin{aligned} & d x^{2}+2 e x+f & =0 \ \Rightarrow & d \cdot \frac{c}{a}-2 e \sqrt{\frac{c}{a}} & +f=0 \Rightarrow \frac{d}{a}-\frac{2 e}{\sqrt{a c}}+\frac{f}{c}=0 \ \Rightarrow & \frac{2 e}{b} & =\frac{d}{a}+\frac{f}{c} \quad\left[\because b^{2}=a c\right]\end{aligned}$

Hence, $\quad \frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in an AP.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक