Sequences and Series 2 Question 8

9.

If the sum of first $n$ terms of an $AP$ is $c n^{2}$, then the sum of squares of these $n$ terms is

(a) $\frac{n\left(4 n^{2}-1\right) c^{2}}{6}$

(b) $\frac{n\left(4 n^{2}+1\right) c^{2}}{3}$

(c) $\frac{n\left(4 n^{2}-1\right) c^{2}}{3}$

(d) $\frac{n\left(4 n^{2}+1\right) c^{2}}{6}$

(2009)

Show Answer

Answer:

Correct Answer: 9. (c)

Solution:

  1. Let $S _n=c n^{2}$

$ S _{n-1}=c(n-1)^{2}=c n^{2}+c-2 c n $

$T _n=2 c n-c \quad\left [\because T _n=S _n-S _{n-1}\right]$

$T _n^{2}=(2 c n-c)^{2}=4 c^{2} n^{2}+c^{2}-4 c^{2} n$

Sum= $\in T_n^2 = \frac{4c^2.n(n+1)(2n+1)}{6} + nc^2 -2c^2n(n+1)$

$=\frac{2c^2n(n+1) (2n+1) + 3nc^2 -6c^2n(n+1)}{3} $

$= \frac{nc^2(4n^2 +6n +2 +3 -6n -6) }{3}$

$=\frac{nc^2(4n^2-1)}{3}$



NCERT Chapter Video Solution

Dual Pane