Sequences and Series 2 Question 8
9. If the sum of first $n$ terms of an $AP$ is $c n^{2}$, then the sum of squares of these $n$ terms is
(a) $\frac{n\left(4 n^{2}-1\right) c^{2}}{6}$
(b) $\frac{n\left(4 n^{2}+1\right) c^{2}}{3}$
(c) $\frac{n\left(4 n^{2}-1\right) c^{2}}{3}$
(d) $\frac{n\left(4 n^{2}+1\right) c^{2}}{6}$
(2009)
Show Answer
Answer:
Correct Answer: 9. (b)
Solution:
- Let $S _n=c n^{2}$
$$ \begin{array}{cc} & S _{n-1}=c(n-1)^{2}=c n^{2}+c-2 c n \\ T _n=2 c n-c \quad\left[\because T _n=S _n-S _{n-1}\right] \\ T _n^{2}=(2 c n-c)^{2}=4 c^{2} n^{2}+c^{2}-4 c^{2} n \end{array} $$