Sequences and Series 2 Question 3

3.

For xR, let [x] denote the greatest integer x, then the sum of the series [13]+[131100]+[132100]++[1399100] is

(2019 Main, 12 April I)

(a) 153

(b) 133

(c) 131

(d) 135

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Given series is

[13]+[131100]+[132100]++[1399100]

[where, [x] denotes the greatest integer x]

Now,

[13],[131100],[132100],+[1366100]

all the term have value -1

and [1367100],[1368100],,[1399100] all the term have value -2 .

So, [13]+[131100]+[132100]++[1366100]

=111167 times.

=(1)×67=67

and [1367100]+[1368100]++[1399100]

=222233 times

=(2)×33=66

[13]+[131100]+[132100]++[1399100]

=(67)+(66)=133.

Alternate Solution

[x]=[x]1, if x Integer,

and [x]+[x+1n]+[x+2n]++[x+n1n]=[nx],

nN.

So given series

[13]+[131100]+[132100]++[1399100]=[131]+[13+11001]+[13+21001]++[13+991001]=(1)×100[13×100]=10033=133.



NCERT Chapter Video Solution

Dual Pane