Sequences and Series 2 Question 3

3.

For $x \in R$, let $[x]$ denote the greatest integer $\leq x$, then the sum of the series $[-\frac{1}{3}]+[-\frac{1}{3}-\frac{1}{100}]+[-\frac{1}{3}-\frac{2}{100}]+\ldots+[-\frac{1}{3}-\frac{99}{100}]$ is

(2019 Main, 12 April I)

(a) $-153$

(b) $-133$

(c) $-131$

(d) $-135$

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Given series is

$ [-\frac{1}{3}]+[-\frac{1}{3}-\frac{1}{100}]+[-\frac{1}{3}-\frac{2}{100}]+\ldots \ldots+[-\frac{1}{3}-\frac{99}{100}] $

[where, $[x]$ denotes the greatest integer $\leq x]$

Now,

$ [-\frac{1}{3}],[-\frac{1}{3}-\frac{1}{100}],[-\frac{1}{3}-\frac{2}{100}], \ldots+[-\frac{1}{3}-\frac{66}{100}] $

all the term have value -1

and $[-\frac{1}{3}-\frac{67}{100}],[-\frac{1}{3}-\frac{68}{100}], \ldots,[-\frac{1}{3}-\frac{99}{100}]$ all the term have value -2 .

So, $[-\frac{1}{3}]+[-\frac{1}{3}-\frac{1}{100}]+[-\frac{1}{3}-\frac{2}{100}]+\ldots+[-\frac{1}{3}-\frac{66}{100}]$

$=-1-1-1-1 \ldots 67$ times.

$=(-1) \times 67=-67$

and $[-\frac{1}{3}-\frac{67}{100}]+[-\frac{1}{3}-\frac{68}{100}]+\ldots+[-\frac{1}{3}-\frac{99}{100}]$

$=-2-2-2-2 \ldots 33$ times

$=(-2) \times 33=-66$

$\therefore \quad [-\frac{1}{3}]+[-\frac{1}{3}-\frac{1}{100}]+[-\frac{1}{3}-\frac{2}{100}]+\ldots+[-\frac{1}{3}-\frac{99}{100}]$

$=(-67)+(-66)=-133$.

Alternate Solution

$\because[-x]=-[x]-1$, if $x \notin$ Integer,

and $[x]+[x+\frac{1}{n}]+[x+\frac{2}{n}]+\ldots+\quad [x+\frac{n-1}{n}]=[n x]$,

$n \in N$.

So given series

$ \begin{aligned} & [-\frac{1}{3}]+[-\frac{1}{3}-\frac{1}{100}]+[-\frac{1}{3}-\frac{2}{100}]+\ldots \ldots+[\frac{-1}{3}-\frac{99}{100}] \\ & =[-\frac{1}{3}-1]+[-\frac{1}{3}+\frac{1}{100}-1] \\ & \quad+[-\frac{1}{3}+\frac{2}{100}-1]+\ldots+[-\frac{1}{3}+\frac{99}{100}-1 ]\\ & =(-1) \times 100-[\frac{1}{3} \times 100]=-100-33=-133 . \end{aligned} $



NCERT Chapter Video Solution

Dual Pane