Sequences and Series 2 Question 3

3. For $x \in R$, let $[x]$ denote the greatest integer $\leq x$, then the sum of the series $-\frac{1}{3}+-\frac{1}{3}-\frac{1}{100}+-\frac{1}{3}-\frac{2}{100}+\ldots+-\frac{1}{3}-\frac{99}{100}$ is (2019 Main, 12 April I)

(a) $\frac{1}{m n}$

(b) $\frac{1}{m}+\frac{1}{n}$

(c) 1

(d) 0

Analytical and Descriptive Question

Show Answer

Answer:

Correct Answer: 3. (c)

Solution:

  1. Given series is

$$ -\frac{1}{3}+-\frac{1}{3}-\frac{1}{100}+-\frac{1}{3}-\frac{2}{100}+\ldots \ldots+-\frac{1}{3}-\frac{99}{100} $$

[where, $[x]$ denotes the greatest integer $\leq x]$

Now,

$$ -\frac{1}{3},-\frac{1}{3}-\frac{1}{100},-\frac{1}{3}-\frac{2}{100}, \ldots+-\frac{1}{3}-\frac{66}{100} $$

all the term have value -1

and $-\frac{1}{3}-\frac{67}{100},-\frac{1}{3}-\frac{68}{100}, \ldots,-\frac{1}{3}-\frac{99}{100}$ all the term have value -2 .

So, $-\frac{1}{3}+-\frac{1}{3}-\frac{1}{100}+-\frac{1}{3}-\frac{2}{100}+\ldots+-\frac{1}{3}-\frac{66}{100}$

$=-1-1-1-1 \ldots 67$ times.

$=(-1) \times 67=-67$

and $-\frac{1}{3}-\frac{67}{100}+-\frac{1}{3}-\frac{68}{100}+\ldots+-\frac{1}{3}-\frac{99}{100}$

$=-2-2-2-2 \ldots 33$ times

$=(-2) \times 33=-66$ $\therefore \quad-\frac{1}{3}+-\frac{1}{3}-\frac{1}{100}+-\frac{1}{3}-\frac{2}{100}+\ldots+-\frac{1}{3}-\frac{99}{100}$

$=(-67)+(-66)=-133$.

Alternate Solution

$\because[-x]=-[x]-1$, if $x \notin$ Integer,

and $[x]+x+\frac{1}{n}+x+\frac{2}{n}+\ldots+\quad x+\frac{n-1}{n}=[n x]$,

$n \in N$.

So given series

$$ \begin{aligned} & -\frac{1}{3}+-\frac{1}{3}-\frac{1}{100}+-\frac{1}{3}-\frac{2}{100}+\ldots \ldots+\frac{-1}{3}-\frac{99}{100} \\ & =-\frac{1}{3}-1+-\frac{1}{3}+\frac{1}{100}-1 \\ & \quad+-\frac{1}{3}+\frac{2}{100}-1+\ldots+-\frac{1}{3}+\frac{99}{100}-1 \\ & =(-1) \times 100-\frac{1}{3} \times 100=-100-33=-133 . \end{aligned} $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक