Probability 3 Question 2

2. Four persons can hit a target correctly with probabilities $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is

(2019 Main, 9 April I)

(a) $\frac{1}{192}$

(b) $\frac{25}{32}$

(c) $\frac{7}{32}$

(d) $\frac{25}{192}$

Show Answer

Answer:

Correct Answer: 2. (b)

1. (d) 2. (b) 3. (b) 4. (a)
5. (c) 6. (d) 7. (a) 8. (a)
9. (d) 10. (c) 11. (c) 12. (b)
13. (b) 14. (a) 15. (a) 16. (b)
17. (a) 18. (c) 19. (b) 20. (b)
21. (a, b) 22. (a,b) 23. (a, d) 24. (b, c)
25. (a, d) 26. (a, d) 27. (a, c) 28. (b, c, d)
29. $\frac{1}{4}$ 30. $\frac{5}{7}$ 31. $\frac{2}{5}$ 32. $\frac{32}{55}$
33. $\frac{1}{9}$ 35. $\frac{1}{2}$ 36. $2 p^{2}-p^{3}$ 38. $\frac{193}{792}$

Solution:

  1. Key Idea Use $P(\bar{A})=1-P(A)$ and condition of independent events i.e $P(A \cap B)=P(A) \cdot P(B)$

Given that probability of hitting a target independently by four persons are respectively

$$ P _1=\frac{1}{2}, P _2=\frac{1}{3}, P _3=\frac{1}{4} \text { and } P _4=\frac{1}{8} $$

Then, the probability of not hitting the target is

$$ =1-\frac{1}{2} \quad 1-\frac{1}{3} \quad 1-\frac{1}{4} \quad 1-\frac{1}{8} $$

$$ =\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{7}{8}=\frac{7}{32} $$

$[\because$ events are independent]

Therefore, the required probability of hitting the target $=1-($ Probability of not hitting the target)

$=1-\frac{7}{32}=\frac{25}{32}$



NCERT Chapter Video Solution

Dual Pane