Parabola 3 Question 5

5. A solution curve of the differential equation $\left(x^{2}+x y+4 x+2 y+4\right) \frac{d y}{d x}-y^{2}=0, \quad x>0, \quad$ passes through the point $(1,3)$. Then, the solution curve

(a) intersects $y=x+2$ exactly at one point

(2016 Adv.)

(b) intersects $y=x+2$ exactly at two points

(c) intersects $y=(x+2)^{2}$

(d) does not intersect $y=(x+3)^{2}$

Show Answer

Answer:

Correct Answer: 5. (a, d)

Solution:

  1. Since, $R-a, a \quad t-\frac{1}{t} \quad$ lies on $y=2 x+a$.

$\Rightarrow \quad a \cdot t-\frac{1}{t}=-2 a+a \Rightarrow \quad t-\frac{1}{t}=-1$

Thus, length of focal chord

$$ =a \quad t+\frac{1}{t}^{2}=a \quad t-\frac{1}{t}^{2}+4=5 a $$



NCERT Chapter Video Solution

Dual Pane