Matrices and Determinants 3 Question 10

12. If $A=$

$\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 1\\ 0 & -2 & 4 \end{bmatrix}$, $6 A^{-1}=A^{2}+c A+d I$, then $(c, d)$ is

(2005, 1M)

(a) $(-6,11)$

(b) $(-11,6)$

(c) $(11,6)$

(d) $(6,11)$

Show Answer

Answer:

Correct Answer: 12. (a)

Solution:

  1. Every square matrix satisfied its characteristic equation,

$ \begin{aligned} & \text { i.e. }|A-\lambda I|=0 \Rightarrow\left|\begin{array}{ccc} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & -2 & 4-\lambda \end{array}\right|=0 \\ & \Rightarrow \quad(1-\lambda){(1-\lambda)(4-\lambda)+2}=0 \\ & \Rightarrow \quad \lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \\ & \Rightarrow \quad A^{3}-6 A^{2}+11 A-6 I=O \end{aligned} $

Given, $6 A^{-1}=A^{2}+c A+d I$, multiplying both sides by $A$, we get

$6 I=A^{3}+c A^{2}+d A \Rightarrow A^{3}+c A^{2}+d A-6 I=O$

On comparing Eqs. (i) and (ii), we get

$ c=-6 \text { and } d=11 $



NCERT Chapter Video Solution

Dual Pane