Matrices and Determinants 3 Question 10

«««< HEAD

12. If A=011,6A1=A2+cA+dI, then (c,d) is 024

======= ####12. If A= [100011024], 6A1=A2+cA+dI, then (c,d) is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2005, 1M)

(a) (6,11)

(b) (11,6)

(c) (11,6)

(d) (6,11)

Show Answer

Answer:

Correct Answer: 12. (a)

Solution:

  1. Every square matrix satisfied its characteristic equation,

 i.e. |AλI|=0|1λ0001λ1024λ|=0(1λ)(1λ)(4λ)+2=0λ36λ2+11λ6=0A36A2+11A6I=O

Given, 6A1=A2+cA+dI, multiplying both sides by A, we get

6I=A3+cA2+dAA3+cA2+dA6I=O

On comparing Eqs. (i) and (ii), we get

c=6 and d=11



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक