Matrices and Determinants 2 Question 4

4. If

[1101] [1201] [1301] [1n101] =[17801] , then the inverse of [1n01] is

(2019 Main, 9 April I)

(a) [10121]

(b) [11301]

(c) [10131]

(d) [11201]

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. Given

[1101] [1201] [1301] [1n101] =[17801]

[1101] [1201] =[12+101]

[12+101] [1301] =[13+2+101]

[1101] [1201] [1301] [1n101]

=[1(n1)+(n2)++3+2+101]

=[1n(n1)201] =[17801]

Since, both matrices are equal, so equating corresponding element, we get

n(n1)2=78n(n1)=156=13×12=13(131)

n=13

So, A=[11301]=A1=[11301]

if |A|=1 and A=[abcd], then A1=[dbca]



NCERT Chapter Video Solution

Dual Pane