Matrices and Determinants 2 Question 4

«««< HEAD

4. If 1112131n1 010101178 01, then the inverse of 1n 01 is

======= ####4. If [1101] [1201] [1301] [1n101] =[17801] , then the inverse of [1n01] is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed

(2019 Main, 9 April I)

(a) [10121]

(b) [11301]

(c) [10131]

(d) [11201]

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. Given

[1101] [1201] [1301] [1n101] =[17801]

[1101] [1201] =[12+101]

[12+101] [1301] =[13+2+101]

[1101] [1201] [1301] [1n101]

=[1(n1)+(n2)++3+2+101]

=[1n(n1)201] =[17801]

Since, both matrices are equal, so equating corresponding element, we get

n(n1)2=78n(n1)=156=13×12=13(131)

n=13

So, A=[11301]=A1=[11301]

if |A|=1 and A=[abcd], then A1=[dbca]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक