Limit Continuity and Differentiability 2 Question 4

4. For each tR, let [t] be the greatest integer less than or equal to t. Then,

limx1+(1|x|+sin|1x|)sinπ2[1x]|1x|[1x]

(2019 Main, 10 Jan I)

(a) equals 0

(b) does not exist

(c) equals -1

(d) equals 1

Show Answer

Answer:

Correct Answer: 4. (d)

Solution:

  1. Here,

f(x)=limnnn(x+n)x+n2x+nnn!(x2+n2)x2+n24x2+n2n2,x>0

Taking log on both sides, we get

logef(x)=limnlognn(x+n)x+n2x+nnn!(x2+n2)x2+n24x2+n2n2

=limnxnlogr=1nx+1r/nr=1nx2+1(r/n)2r=1n(r/n)=xlimn1nr=1nlogx+nrx2+n2r2rn=xlimn1nr=1nlogrnx+1r2n2x2+1

Converting summation into definite integration, we get

logef(x)=x01logxt+1x2t2+1dt Put, tx=zxdt=dzlogef(x)=x0xlog1+z1+z2dzxlogef(x)=0xlog1+z1+z2dz

Using Newton-Leibnitz formula, we get

1f(x)f(x)=log1+x1+x2

Here, at x=1,

f(1)f(1)=log(1)=0f(1)=0

Now, sign scheme of f(x) is shown below

At x=1, function attains maximum.

Since, f(x) increases on (0,1).

f(1)>f(1/2)

Option (a) is incorrect.

f(1/3)<f(2/3)

Option (b) is correct.

Also, f(x)<0, when x>1

f(2)<0

Option (c) is correct.

Also, f(x)f(x)=log1+x1+x2

f(3)f(3)f(2)f(2)=log410log35

f(3)f(3)<f(2)f(2)

Option (d) is incorrect.



NCERT Chapter Video Solution

Dual Pane