Inverse Circular Functions 2 Question 1

1. Let f(x)=loge(sinx),(0<x<π) and g(x)=sin1(ex), (x0). If α is a positive real number such that a=(fg)(α) and b=(fg)(α), then (2019 Main, 10 April II)

(a) aα2bαa=0

(b) aα2bαa=1

(c) aα2+bαa=2α2

(d) aα2+bα+a=0

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given functions, f(x)=loge(sinx),(0<x<π) and g(x)=sin1(ex),x0. Now, fg(x)=f(g(x))=f(sin1(ex))

=loge(sin(sin1(ex)))

=loge(ex)

sin(sin1x)=x,

if x[1,1]

=x

and

(fg)(x)=ddx(x)=1

According to the question, a=(fg)(α)=1 [from Eq. (ii)] [from Eq. (i)]

and b=(fg)(α)=(α)

for a positive real value ’ α ‘.

Since, the value of a=1 and b=α, satisfy the quadratic equation (from the given options)

aα2bαa=1



NCERT Chapter Video Solution

Dual Pane