Inverse Circular Functions 2 Question 1

1. Let $f(x)=\log _e(\sin x),(0<x<\pi)$ and $g(x)=\sin ^{-1}\left(e^{-x}\right)$, $(x \geq 0)$. If $\alpha$ is a positive real number such that $a=(f \circ g)^{\prime}(\alpha)$ and $b=(f \circ g)(\alpha)$, then (2019 Main, 10 April II)

(a) $a \alpha^{2}-b \alpha-a=0$

(b) $a \alpha^{2}-b \alpha-a=1$

(c) $a \alpha^{2}+b \alpha-a=-2 \alpha^{2}$

(d) $a \alpha^{2}+b \alpha+a=0$

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given functions, $f(x)=\log _e(\sin x), \quad(0<x<\pi)$ and $g(x)=\sin ^{-1}\left(e^{-x}\right), x \geq 0$. Now, $f \circ g(x)=f(g(x))=f\left(\sin ^{-1}\left(e^{-x}\right)\right)$

$=\log _e\left(\sin \left(\sin ^{-1}\left(e^{-x}\right)\right)\right)$

$=\log _e\left(e^{-x}\right) \quad{\because \sin \left(\sin ^{-1} x\right)=x\right.$, if $\left.x \in[-1,1] }$

$=-x$

and

$$ (f \circ g)^{\prime}(x)=\frac{d}{d x}(-x)=-1 $$

According to the question, $\because a=(f \circ g)^{\prime}(\alpha)=-1$ [from Eq. (ii)] [from Eq. (i)]

and $\quad b=(f \circ g)(\alpha)=-(\alpha)$

for a positive real value ’ $\alpha$ ‘.

Since, the value of $a=-1$ and $b=-\alpha$, satisfy the quadratic equation (from the given options)

$$ a \alpha^{2}-b \alpha-a=1 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक