Indefinite Integration 1 Question 65

66. The value of (5050)01(1x50)100dx01(1x50)101dx is

(2006,6 M)

Show Answer

Solution:

  1. Let I2=01(1x50)101dx,

=[(1x50)101x]01+01(1x50)10050x49xdx

[using integration by parts]

=001(50)(101)(1x50)100(x50)dx

=(50)(101)01(1x50)101dx+(50)(101)01(1x50)100dx=5050I2+5050I1

I2+5050I2=5050I1

(5050)I1I2=5051



NCERT Chapter Video Solution

Dual Pane