Indefinite Integration 1 Question 65

66. The value of $\frac{(5050) \int _0^{1}\left(1-x^{50}\right)^{100} d x}{\int _0^{1}\left(1-x^{50}\right)^{101} d x}$ is

$(2006,6$ M)

Show Answer

Solution:

  1. Let $I _2=\int _0^{1}\left(1-x^{50}\right)^{101} d x$,

$$ =\left[\left(1-x^{50}\right)^{101} \cdot x\right] _0^{1}+\int _0^{1}\left(1-x^{50}\right)^{100} 50 \cdot x^{49} \cdot x d x $$

[using integration by parts]

$$ =0-\int _0^{1}(50)(101)\left(1-x^{50}\right)^{100}\left(-x^{50}\right) d x $$

$$ \begin{aligned} = & -(50)(101) \int _0^{1}\left(1-x^{50}\right)^{101} d x \\ & +(50)(101) \int _0^{1}\left(1-x^{50}\right)^{100} d x=5050 I _2+5050 I _1 \end{aligned} $$

$\therefore \quad I _2+5050 I _2=5050 I _1$

$\Rightarrow \quad \frac{(5050) I _1}{I _2}=5051$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक