Indefinite Integration 1 Question 52

53. If In=ππsinnx(1+πx)sinxdx,n=0,1,2,, then

(a) In=In+2

(b) m=110I2m+1=10π

(c) m=110I2m=0

(d) In=In+1

Numerical Value

Show Answer

Solution:

  1. Given

In=ππsinnx(1+πx)sinxdx

Using abf(x)dx=abf(b+ax)dx, we get

In=πππxsinnx(1+πx)sinxdx

On adding Eqs. (i) and (ii), we have

2In=ππsinnxsinxdx=20πsinnxsinxsindx[f(x)=sinnxsinx is an even function ]In=0πsinnxsinxdx Now, In+2In=0πsin(n+2)xsinnxsinxdx

=20πcos(n+1)xdx=2sin(n+1)x(n+1)0π=0In+2=In

m=110I2m+1=10π and m=110I2m=0

Correct options are (a), (b), (c).



NCERT Chapter Video Solution

Dual Pane