Indefinite Integration 1 Question 52

53. If $I _n=\int _{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x, n=0,1,2, \ldots$, then

(a) $I _n=I _{n+2}$

(b) $\sum _{m=1}^{10} I _{2 m+1}=10 \pi$

(c) $\sum _{m=1}^{10} I _{2 m}=0$

(d) $I _n=I _{n+1}$

Numerical Value

Show Answer

Solution:

  1. Given

$$ I _n=\int _{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x $$

Using $\int _a^{b} f(x) d x=\int _a^{b} f(b+a-x) d x$, we get

$$ I _n=\int _{-\pi}^{\pi} \frac{\pi^{x} \sin n x}{\left(1+\pi^{x}\right) \sin x} d x $$

On adding Eqs. (i) and (ii), we have

$$ \begin{aligned} & 2 I _n=\int _{-\pi}^{\pi} \frac{\sin n x}{\sin x} d x=2 \int _0^{\pi \sin n x} \frac{\sin x}{\sin } d x \\ & {\left[\because f(x)=\frac{\sin n x}{\sin x} \text { is an even function }\right]} \\ & \Rightarrow \quad I _n=\int _0^{\pi} \frac{\sin n x}{\sin x} d x \\ & \text { Now, } I _{n+2}-I _n=\int _0^{\pi} \frac{\sin (n+2) x-\sin n x}{\sin x} d x \end{aligned} $$

$$ \begin{aligned} & =2 \int _0^{\pi} \cos (n+1) x d x=2 \frac{\sin (n+1) x}{(n+1)}{ } _0^{\pi}=0 \\ & \therefore \quad I _{n+2}=I _n \end{aligned} $$

$\Rightarrow \quad \sum _{m=1}^{10} I _{2 m+1}=10 \pi$ and $\quad \sum _{m=1}^{10} I _{2 m}=0$

$\therefore$ Correct options are (a), (b), (c).



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक