Functions 3 Question 7

7. Which of the following functions is periodic? $(1983,1 M)$

(a) $f(x)=x-[x]$, where $[x]$ denotes the greatest integer less than or equal to the real number $x$

(b) $f(x)=\sin (1 / x)$ for $x \neq 0, f(0)=0$

(c) $f(x)=x \cos x$

(d) None of the above

Objective Question II

(One or more than one correct option)

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. We have, $f(x)=\frac{x}{1+x^{2}}$

$$ \therefore \quad f \frac{1}{x}=\frac{\frac{1}{x}}{1+\frac{1}{x^{2}}}=\frac{x}{1+x^{2}}=f(x) $$

$\therefore \quad f \frac{1}{2}=f(2)$ or $f \frac{1}{3}=f(3)$ and so on.

So, $f(x)$ is many-one function.

Again, let $\quad y=f(x) \Rightarrow y=\frac{x}{1+x^{2}}$

$\Rightarrow \quad y+x^{2} y=x \Rightarrow y x^{2}-x+y=0$

As, $\quad x \in R$

$\therefore \quad(-1)^{2}-4(y)(y) \geq 0$

$\Rightarrow \quad 1-4 y^{2} \geq 0$

$\Rightarrow \quad y \in \frac{-1}{2}, \frac{1}{2}$

$\therefore$ Range $=$ Codomain $=\frac{-1}{2}, \frac{1}{2}$

So, $f(x)$ is surjective.

Hence, $f(x)$ is surjective but not injective.



NCERT Chapter Video Solution

Dual Pane