Functions 3 Question 5

5. If the function $f:[1, \infty) \rightarrow[1, \infty)$ is defined by $f(x)=2^{x(x-1)}$, then $f^{-1}(x)$ is

(1999, 2M)

(a) $\frac{1}{2}^{x(x-1)}$

(b) $\frac{1}{2}\left(1+\sqrt{1+4 \log _2 x}\right)$

(c) $\frac{1}{2}\left(1-\sqrt{1+4 \log _2 x}\right)$

(d) not defined

Show Answer

Answer:

Correct Answer: 5. (b)

Solution:

  1. Given, $f(n)=\frac{n+1}{\frac{n}{2}}$, if $n$ is even,

and $\quad g(n)=n-(-1)^{n}={\begin{array}{l}n+1, \text { if } n \text { is odd } \ n-1, \text { if } n \text { is even }\end{array}\right.$

Now, $f(g(n))={\begin{array}{l}f(n+1), \text { if } n \text { is odd } \ f(n-1), \text { if } n \text { is even }\end{array}\right.$

$=\frac{\frac{n+1}{2} \text {, if } n \text { is odd }}{\frac{n-1}{2}=\frac{n}{2} \text {, if } n \text { is even }}$

$=f(x)$

$[\because$ if $n$ is odd, then $(n+1)$ is even and if $n$ is even, then $(n-1)$ is odd]

Clearly, function is not one-one as $f(2)=f(1)=1$

But it is onto function.

$[\because$ If $m \in N$ (codomain) is odd, then $2 m \in N$ (domain) such that $f(2 m)=m$ and

if $m \in N$ codomain is even, then

$$ 2 m-1 \in N \text { (domain) such that } f(2 m-1)=m \text { ] } $$

$\therefore$ Function is onto but not one-one



NCERT Chapter Video Solution

Dual Pane