Ellipse 2 Question 9

9. The area (in sq units) of the quadrilateral formed by the tangents at the end points of the latusrectum to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ is

(2015 Main)

(a) $\frac{27}{4}$

(b) 18

(c) $\frac{27}{2}$

(d) 27

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. Given equation of ellipse is

$ \begin{array}{lc} & \frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \\ \therefore & a^{2}=9, b^{2}=5 \Rightarrow a=3, b=\sqrt{5} \\ \text { Now, } & e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{5}{9}}=\frac{2}{3} \end{array} $

Foci $=( \pm a e, 0)=( \pm 2,0)$ and $\frac{b^{2}}{a}=\frac{5}{3}$

$\therefore$ Extremities of one of latusrectum are

$ 2, \frac{5}{3} \text { and } 2, \frac{-5}{3} $

$\therefore$ Equation of tangent at $2, \frac{5}{3}$ is

$ \frac{x(2)}{9}+\frac{y(5 / 3)}{5}=1 \quad \text { or } \quad 2 x+3 y=9 $

Since, Eq. (ii) intersects $X$ and $Y$-axes at $\frac{9}{2}, 0$ and $(0,3)$, respectively.

$\therefore$ Area of quadrilateral $=4 \times$ Area of $\triangle P O Q$

$ =4 \times \frac{1}{2} \times \frac{9}{2} \times 3=27 \text { sq units } $



NCERT Chapter Video Solution

Dual Pane