Differential Equations 3 Question 15

15.

Determine the equation of the curve passing through the origin in the form y=f(x), which satisfies the differential equation dydx=sin(10x+6y)

Show Answer

Answer:

Correct Answer: 15. (13tan1[45tan(4x+tan134)35]5x3)

Solution:

  1. Given,

dydx=sin(10x+6y)

Let 10x+6y+t …….(i)

10+6dydx=dtdx

dydx=16(dtdx10)

Now, the given differential equation becomes

sint=16(dtdx10)

6sint=dtdx10

dtdx=6sint+10

dt6sint+10=dx

On integrating both sides, we get

12dt3sint+5=x+c …….(ii)

Let I1=dt3sint+5=dt3(2tant/21+tan2t/2)+5

=(1+tan2t/2)dt(6tant2+5+5tan2t2)

Put tant/2=u

12sec2t/2dt=dudt=2dusec2t/2

dt=2du1+tan2t/2dt=2du1+u2

I1=2(1+u2)du(1+u2)(5u2+6u+5)=25duu2+65u+1

=25duu2+65u+925925+1

=25duu+352+452=2554tan1u+3/54/5

=12tan15u+34=12tan15tant/2+34

On putting this in Eq. (ii), we get

14tan1[5tant2+34]=x+ctan1[5tant2+34]=4x+4c14[5tan(5x+3y)+3]=tan(4x+4c)5tan(5x+3y)+3=4tan(4x+4c)

When x=0,y=0, we get

5tan0+3=4tan(4c)

34=tan4c4c=tan134

Then, 5tan(5x+3y)+3=4tan(4x+tan134)

tan(5x+3y)=45tan(4x+tan34)35

5x+3y=tan1[45tan(4x+tan134)35]

3y=tan1[45tan(4x+tan134)35]5x

y=13tan1[45tan(4x+tan134)35]5x3



NCERT Chapter Video Solution

Dual Pane