Differential Equations 3 Question 15

15. Determine the equation of the curve passing through the origin in the form y=f(x), which satisfies the differential equation dydx=sin(10x+6y)

(1996,5 M)

Match the Columns

Show Answer

Solution:

  1. Given,

t0=log3/4(1/2)dydx=sin(10x+6y)

Let

10+6dydx=dtdxdydx=16dtdx10

Now, the given differential equation becomes

sint=16dtdx106sint=dtdx10dtdx=6sint+10dt6sint+10=dx

On integrating both sides, we get

 Let 12dt3sint+5=dt3sint+5=dt32tant/21+tan2t/2+5=(1+tan2t/2)dt6tant2+5+5tan2t2

Put tant/2=u

12sec2t/2dt=dudt=2dusec2t/2

dt=2du1+tan2t/2dt=2du1+u2

I1=2(1+u2)du(1+u2)(5u2+6u+5)=25duu2+65u+1

=25duu2+65u+925925+1

=25duu+352+452=2554tan1u+3/54/5

=12tan15u+34=12tan15tant/2+34

On putting this in Eq. (ii), we get

14tan15tant2+34=x+ctan15tant2+34=4x+4c14[5tan(5x+3y)+3]=tan(4x+4c)5tan(5x+3y)+3=4tan(4x+4c)

When x=0,y=0, we get

5tan0+3=4tan(4c)

34=tan4c4c=tan134

Then, 5tan(5x+3y)+3=4tan4x+tan134

tan(5x+3y)=45tan4x+tan3435

5x+3y=tan145tan4x+tan13435

3y=tan145tan4x+tan134355x

y=13tan145tan4x+tan134355x3



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक