Differential Equations 2 Question 16

16.

Let $y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$. Then, $y(e)$ is equal to

(a) e

(b) 0

(c) 2

(d) $2 e$

(2015 Main)

Show Answer

Answer:

Correct Answer: 16. (c)

Solution:

  1. Given differential equation is

$ \begin{aligned} & (x \log x) \frac{d y}{d x}+y=2 x \log x \\ & \Rightarrow \quad \frac{d y}{d x}+\frac{y}{x \log x}=2 \end{aligned} $

This is a linear differential equation.

$ \therefore \quad IF=e^{\int \frac{1}{x \log x} d x}=e^{\log (\log x)}=\log x $

Now, the solution of given differential equation is given by

$ y \cdot \log x=\int \log x \cdot 2 d x $

$ \Rightarrow \quad y \cdot \log x=2 \int \log x d x $

$ \Rightarrow \quad y \cdot \log x=2[x \log x-x]+c$

At $\quad x=1 \Rightarrow c=2 $

$\Rightarrow \quad y.log x=2 [x logx-x ] +2$

At $\quad x= e, y= 2 (e-e) +2$

$y=2$



NCERT Chapter Video Solution

Dual Pane