Differential Equations 2 Question 16

16. Let $y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$. Then, $y(e)$ is equal to

(a) e

(b) 0

(c) 2

(d) $2 e$

(2015 Main)

Show Answer

Answer:

Correct Answer: 16. (c)

Solution:

  1. Given differential equation is

$$ \begin{aligned} & (x \log x) \frac{d y}{d x}+y=2 x \log x \\ & \Rightarrow \quad \frac{d y}{d x}+\frac{y}{x \log x}=2 \end{aligned} $$

This is a linear differential equation.

$$ \therefore \quad IF=e^{\int \frac{1}{x \log x} d x}=e^{\log (\log x)}=\log x $$

Now, the solution of given differential equation is given by

$$ \begin{aligned} & y \cdot \log x=\int \log x \cdot 2 d x \\ & \Rightarrow \quad y \cdot \log x=2 \int \log x d x \\ & \Rightarrow \quad y \cdot \log x=2[x \log x-x]+c \end{aligned} $$

[

]



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक