Differential Equations 1 Question 5

5. If $y=y(x)$ satisfies the differential equation $8 \sqrt{x}(\sqrt{9+\sqrt{x}}) d y=\sqrt{4+\sqrt{9+\sqrt{x}}}^{-1} d x, \quad x>0 \quad$ and $y(0)=\sqrt{7}$, then $y(256)=$

(2017 Adv.)

(a) 16

(b) 3

(c) 9

(d) 80

Show Answer

Answer:

Correct Answer: 5. (b)

Solution:

  1. $\frac{d y}{d x}=\frac{1}{8 \sqrt{x} \sqrt{9+\sqrt{x}} \sqrt{4+\sqrt{9+\sqrt{x}}}}$

$\Rightarrow \quad y=\sqrt{4+\sqrt{9+\sqrt{x}}}+c$

Now, $y(0)=\sqrt{7}+c$

$\Rightarrow \quad c=0$

$$ y(256)=\sqrt{4+\sqrt{9+16}}=\sqrt{4+5}=3 $$



NCERT Chapter Video Solution

Dual Pane