Differential Equations 1 Question 3

3. Let f:[0,1]R be such that f(xy)=f(x).f(y), for all x,y[0,1] and f(0)0. If y=y(x) satisfies the differential equation, dydx=f(x) with y(0)=1, then y14+y34 is equal to

(2019 Main, 9 Jan II)

(a) 5

(b) 3

(c) 2

(d) 4

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Given, f(xy)=f(x)f(y),x,y[0,1]

Putting x=y=0 in Eq. (i), we get

f(0)=f(0)f(0)f(0)[f(0)1]=0f(0)=1 as f(0)0

Now, put y=0 in Eq. (i), we get

f(0)=f(x)f(0)f(x)=1

So,

dydx=f(x)dydx=1

dy=dx

y=x+C

y(0)=1

1=0+C

C=1y=x+1

Now, y14=14+1=54 and y34=34+1=74

y14+y34=54+74=3



NCERT Chapter Video Solution

Dual Pane