Differential Equations 1 Question 3

3. Let $f:[0,1] \rightarrow R$ be such that $f(x y)=f(x) . f(y)$, for all $x, y \in[0,1]$ and $f(0) \neq 0$. If $y=y(x)$ satisfies the differential equation, $\frac{d y}{d x}=f(x)$ with $y(0)=1$, then $y \frac{1}{4}+y \frac{3}{4}$ is equal to

(2019 Main, 9 Jan II)

(a) 5

(b) 3

(c) 2

(d) 4

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. Given, $f(x y)=f(x) \cdot f(y), \forall x, y \in[0,1]$

Putting $x=y=0$ in Eq. (i), we get

$$ \begin{aligned} & & f(0) & =f(0) \cdot f(0) \\ \Rightarrow & & f(0)[f(0)-1] & =0 \\ \Rightarrow & & f(0) & =1 \text { as } f(0) \neq 0 \end{aligned} $$

Now, put $y=0$ in Eq. (i), we get

$$ \begin{array}{ll} & f(0)=f(x) \cdot f(0) \\ \Rightarrow & f(x)=1 \end{array} $$

So,

$$ \frac{d y}{d x}=f(x) \Rightarrow \frac{d y}{d x}=1 $$

$\Rightarrow \quad \int d y=\int d x$

$$ \Rightarrow \quad y=x+C $$

$\because \quad y(0)=1$

$$ \therefore \quad 1=0+C $$

$$ \begin{array}{ll} \Rightarrow & C=1 \\ \therefore & y=x+1 \end{array} $$

Now, $\quad y \frac{1}{4}=\frac{1}{4}+1=\frac{5}{4}$ and $y \frac{3}{4}=\frac{3}{4}+1=\frac{7}{4}$

$\Rightarrow \quad y \frac{1}{4}+y \frac{3}{4}=\frac{5}{4}+\frac{7}{4}=3$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक