Complex Numbers 4 Question 9

9. Suppose z1,z2,z3 are the vertices of an equilateral triangle inscribed in the circle |z|=2. If z1=1+i3, then z2=,z3=.

(1994, 2M)

Show Answer

Answer:

Correct Answer: 9. z2=2,z3=1i3

Solution:

  1. z1=1+i3=r(cosθ+isinθ)

[let]

rcosθ=1,rsinθ=3

r=2 and θ=π/3

So, z1=2(cosπ/3+sinπ/3)

Since, |z2|=|z3|=2

[given]

Now, the triangle z1,z2 and z3 being an equilateral and the sides z1z2 and z1z3 make an angle 2π/3 at the centre.

Therefore, POz2=π3+2π3=π

and POz3=π3+2π3+2π3=5π3

Therefore, z2=2(cosπ+isinπ)=2(1+0)=2

and z3=2cos5π3+isin5π3=212i32=1i3

Alternate Solution

Whenever vertices of an equilateral triangle having centroid is given its vertices are of the form z,zω,zω2.

If one of the vertex is z1=1+i3, then other two vertices are (z1ω),(z1ω2).

(1+i3)(1+i3)2,(1+i3)(1i3)2(1+3)2,(1+i2(3)2+2i3)22,(2+2i3)2=1i3z2=2 and z3=1i3



NCERT Chapter Video Solution

Dual Pane