Complex Numbers 4 Question 6

6.

The complex numbers $z _1, z _2$ and $z _3$ satisfying $\frac{z _1-z _3}{z _2-z _3}=\frac{1-i \sqrt{3}}{2}$ are the vertices of a triangle which is

(a) of area zero

(b) right angled isosceles

(c) equilateral

(d) obtuse angled isosceles

Show Answer

Answer:

Correct Answer: 6. (c)

Solution:

  1. $\frac{z _1-z _3}{z _2-z _3}=\frac{1-i \sqrt{3}}{2}=\frac{(1-i \sqrt{3})(1+i \sqrt{3})}{2(1+i \sqrt{3})}$

$=\frac{1-i^{2} 3}{2(1+i \sqrt{3})}$

$=\frac{4}{2(1+i \sqrt{3})}$

$=\frac{2}{(1+i \sqrt{3})}$

$\Rightarrow \quad \frac{z _2-z _3}{z _1-z _3}=\frac{1+i \sqrt{3}}{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$

$\Rightarrow \quad \frac{z _2-z _3}{z _1-z _3}=1$ and $\arg \frac{z _2-z _3}{z _1-z _3}=\frac{\pi}{3}$

Hence, the triangle is an equilateral.

Alternate Solution

$ \begin{array}{ll} \therefore \frac{z _1-z _3}{z _2-z _3}=\frac{1-i \sqrt{3}}{2} \\ \Rightarrow \quad \frac{z _2-z _3}{z _1-z _3}=\frac{2}{1-i \sqrt{3}}=\frac{1+i \sqrt{3}}{2}=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3} \\ \Rightarrow \quad \arg \frac{z _2-z _3}{z _1-z _3}=\frac{\pi}{3} \text { and also }\left|\frac{z _2-z _3}{z _1-z _3}\right|=1 \end{array} $

Therefore, triangle is equilateral.



NCERT Chapter Video Solution

Dual Pane