Complex Numbers 4 Question 4

4.

The shaded region, where $P=(-1,0), Q=(-1+\sqrt{2}, \sqrt{2})$ $R=(-1+\sqrt{2},-\sqrt{2}), S=(1,0)$ is represented by

$(2005,1 M)$

(a) $|z+1|>2,|\arg (z+1)|<\frac{\pi}{4}$

(b) $|z+1|<2,|\arg (z+1)|<\frac{\pi}{2}$

(c) $|z+1|>2$, $|\arg (z+1)|>\frac{\pi}{4}$

(d) $|z-1|<2,|\arg (z+1)|>\frac{\pi}{2}$

Show Answer

Answer:

Correct Answer: 4. (a)

Solution:

  1. Since, $|P Q|=|P S|=|P R|=2$

$\therefore \quad$ Shaded part represents the external part of circle having centre $(-1,0)$ and radius 2 .

As we know equation of circle having centre $z _0$ and radius $r$, is $\left|z-z _0\right|=r$

$ \begin{array}{ll} \therefore & |z-(-1+0 i)|>2 \\ \Rightarrow & |z+1|>2 \end{array} $

Also, argument of $z+1$ with respect to positive direction of $X$-axis is $\pi / 4$.

$ \therefore \quad \arg (z+1) \leq \frac{\pi}{4} $

and argument of $z+1$ in anticlockwise direction is $-\pi / 4$.

$ \therefore \quad \rightarrow \pi / 4 \leq \arg (z+1) $

From Eqs. (i) and (ii),

$ |\arg (z+1)| \leq \pi / 4 $



NCERT Chapter Video Solution

Dual Pane