Complex Numbers 3 Question 9

9.

Let z1 and z2 be two distinct complex numbers and let z=(1t)z1+tz2 for some real number t with 0<t<1. If arg(w) denotes the principal argument of a non-zero complex number w, then

(2010)

(a) |zz1|+|zz2|=|z1z2|

(b) arg(zz1)=arg(zz2)

(c) |zz1z¯z¯1z2z1z¯2z¯1|=0

(d) arg(zz1)=arg(z2z1)

Show Answer

Answer:

Correct Answer: 9. (a,c,d)

Solution:

  1. Given, z=(1t)z1+tz2(1t)+t

Clearly, z divides z1 and z2 in the ratio of t:(1t), 0<t<1

AP+BP=AB i.e. |zz1|+|zz2|=|z1z2|

Option (a) is true.

 and arg(zz1)=arg(z2z)=arg(z2z1)

Option (b) is false and option (d) is true.

Also, arg(zz1)=arg(z2z1)

argzz1z2z1=0

zz1z2z1 is purely real.

zz1z2z1=z¯z¯1z¯2z¯1

or |zz1z¯z¯1z2z1z¯2z¯1|=0

Option (c) is correct.



NCERT Chapter Video Solution

Dual Pane