Complex Numbers 3 Question 7

7.

If $a, b, c$ and $u, v, w$ are the complex numbers representing the vertices of two triangles such that $c=(1-r) a+r b$ and $w=(1-r) u+r v$, where $r$ is a complex number, then the two triangles

$(1985,2 M)$

(a) have the same area

(b) are similar

(c) are congruent

(d) None of these

Show Answer

Answer:

Correct Answer: 7. (b)

Solution:

  1. Since $a, b, c$ and $u, v, w$ are the vertices of two triangles.

Also, $\quad c=(1-r) a+r b $

and $\quad w=(1-r) u+r v $

consider $\quad \begin{vmatrix}a & u & 1\\ b & v & 1\\ c & w & 1\end{vmatrix}$

Applying $R_3 \rightarrow R_3 -[(1-r) R_1 +rR_2]$

=$\begin{vmatrix} a & u & 1 \\ b & v & 1 \\ c-(1-r) a-r b & w-(1-r) u-r v & 1-(1-r)-r \end{vmatrix}$

$ \begin{aligned} & =\begin{vmatrix} a & u & 1 \\ b & v & 1 \\ 0 & 0 & 0 \end{vmatrix}=0 \end{aligned} $



NCERT Chapter Video Solution

Dual Pane