Complex Numbers 2 Question 46

47.

If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

$(1978,2 M)$

Show Answer

Solution:

  1. Since, $(x+i y)^{2}=\frac{a+i b}{c+i d}$

$\Rightarrow \quad|x+i y|^{2}=\frac{|a+i b|}{|c+i d|} \quad \because\left|\frac{z _1}{z _2}\right|=\frac{\left|z _1\right|}{\left|z _2\right|}$

$\Rightarrow \quad\left(x^{2}+y^{2}\right)=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}}$

$\Rightarrow \quad\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

Hence proved.



NCERT Chapter Video Solution

Dual Pane