Complex Numbers 2 Question 31

32.

If $\alpha, \beta$, $\gamma$ are the cube roots of $p, p<0$, then for any $x, y$ and $z$ then $\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}=\ldots$.

(1990, 2M)

Show Answer

Answer:

Correct Answer: 32. $\omega^2$

Solution:

  1. $\frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}=\frac{x(p)^{1 / 3}+y(p)^{1 / 3} \omega+z(p)^{1 / 3} \omega^{2}}{x(p)^{1 / 3} \omega^{2}+y(p)^{1 / 3} \omega^{3}+z(p)^{1 / 3} \omega}$ $ \frac{\omega^{2}\left(x+y \omega+z \omega^{2}\right)}{\omega^{2}\left(x \omega+y \omega^{2}+z\right)} $

$=\frac{\omega^{2}\left(x+y \omega+z \omega^{2}\right)}{x+y \omega+z \omega^{2}}=\omega^{2}$



NCERT Chapter Video Solution

Dual Pane