Complex Numbers 2 Question 30

31.

Match the statements of Column I with those of Column II.

Here, $z$ takes values in the complex plane and $\operatorname{Im}(z)$ and $\operatorname{Re}(z)$ denote respectively, the imaginary part and

Column I Column II
A. The set of points $z$ satisfying
$|z-i| z||=|z+i| z||$ is
contained in or equal to
p. an ellipse with
eccentricity 4/5
B. The set of points $z$ satisfying
$|z+4|+|z-4|=0$ is
contained in or equal to
q. the set of points $z$
satisfying $\operatorname{Im}(z)=0$
C. If $|w|=2$, then the set of
points $z=w-\frac{1}{w}$ is contained
in or equal to
r. the set of points $z$
satisfying $|\operatorname{lm}(z)| \leq 1$
D. If $|w|=1$, then the set of points
$z=w+\frac{1}{w}$ is contained in or
equal to
s. the set of points
t. satisfying $|\operatorname{Re}(z)| \leq 2$
the set of points $z$
satisfying $|z| \leq 3$

(2010)

Show Answer

Answer:

Correct Answer: 31. $A → q, r ; B →p; C →p, s, t ; D →q, r, s, t$

Solution:

  1. A. Let $\quad z=x+i y$

$\Rightarrow$ we get $\quad y \sqrt{x^{2}+y^{2}}=0$

$\Rightarrow$ $y=0$

$\Rightarrow$ $I _m(z)=0$

B. We have

$\Rightarrow \quad 2 a e =8,2 a=10 $

$\Rightarrow \quad 10 e =8 $

$\Rightarrow \quad e =\frac{4}{5} $

$\Rightarrow \quad b^{2} =25 \quad (1-\frac{16}{25})=9 $

$\therefore \quad \frac{x^{2}}{25}+\frac{y^{2}}{9} =1$

C. Let $w=2(\cos \theta+i \sin \theta)$

$\therefore \quad z=2(\cos \theta+i \sin \theta)-\frac{1}{2(\cos \theta+i \sin \theta)}$

$ \begin{aligned} & =2(\cos \theta+i \sin \theta)-\frac{1}{2}(\cos \theta-i \sin \theta) \\ & =\frac{3}{2} \cos \theta+\frac{5}{2} i \sin \theta \end{aligned} $

Let $\quad z=x+i y$

$\Rightarrow \quad x=\frac{3}{2} \cos \theta$ and $y=\frac{5}{2} \sin \theta$

$\Rightarrow \quad \frac{2 x^{2}}{3}+\frac{2 y}{5}^{2}=1$

$\Rightarrow \quad \frac{x^{2}}{9 / 4}+\frac{y^{2}}{25 / 4}=1$

$\therefore \quad e=\sqrt{1-\frac{9 / 4}{25 / 4}}=\frac{4}{5}$

D. Let $\quad w=\cos \theta+i \sin \theta$

Then, $\quad z=x+i y=\cos \theta+i \sin \theta+\frac{1}{\cos \theta+i \sin \theta}$

$ =2 \cos \theta $

$\Rightarrow \quad x=2 \cos \theta, y=0$



NCERT Chapter Video Solution

Dual Pane