Complex Numbers 2 Question 30

31. Match the statements of Column I with those of Column II.

Here, z takes values in the complex plane and Im(z) and Re(z) denote respectively, the imaginary part and

Column I
A. The set of points z satisfying
|zi|z||=|z+i|z|| is
contained in or equal to
B. The set of points z satisfying
|z+4|+|z4|=0 is
contained in or equal to
q. the set of points z
satisfying Im(z)=0
C. If |w|=2, then the set of
points z=w1w is contained
in or equal to
r. the set of points z
satisfying |lm(z)|1
D. If |w|=1, then the set of points
z=w+1w is contained in or
equal to
s. the set of points
t. satisfying |Re(z)|2
the set of points z
satisfying |z|3

the real part of z

(2010)

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 31. True

Solution:

  1. A. Let z=x+iy

we get yx2+y2=0

y=0

Im(z)=0

B. We have

2ae=8,2a=1010e=8e=45b2=2511625=9x225+y29=1

w=2(cosθ+isinθ)

z=2(cosθ+isinθ)12(cosθ+isinθ)

=2(cosθ+isinθ)12(cosθisinθ)=32cosθ+52isinθ

Let z=x+iy

x=32cosθ and y=52sinθ

2x23+2y52=1

x29/4+y225/4=1

e=19/425/4=45

D. Let w=cosθ+isinθ

Then, z=x+iy=cosθ+isinθ+1cosθ+isinθ

=2cosθ

x=2cosθ,y=0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक