Complex Numbers 2 Question 30

31. Match the statements of Column I with those of Column II.

Here, $z$ takes values in the complex plane and $\operatorname{Im}(z)$ and $\operatorname{Re}(z)$ denote respectively, the imaginary part and

Column I
A. The set of points $z$ satisfying
$|z-i| z||=|z+i| z||$ is
contained in or equal to
B. The set of points $z$ satisfying
$|z+4|+|z-4|=0$ is
contained in or equal to
q. the set of points $z$
satisfying $\operatorname{Im}(z)=0$
C. If $|w|=2$, then the set of
points $z=w-\frac{1}{w}$ is contained
in or equal to
r. the set of points $z$
satisfying $|\operatorname{lm}(z)| \leq 1$
D. If $|w|=1$, then the set of points
$z=w+\frac{1}{w}$ is contained in or
equal to
s. the set of points
t. satisfying $|\operatorname{Re}(z)| \leq 2$
the set of points $z$
satisfying $|z| \leq 3$

the real part of $z$

(2010)

Fill in the Blanks

Show Answer

Answer:

Correct Answer: 31. True

Solution:

  1. A. Let $z=x+i y$

$\Rightarrow$ we get $y \sqrt{x^{2}+y^{2}}=0$

$\Rightarrow$

$y=0$

$\Rightarrow$

$I _m(z)=0$

B. We have

$$ \begin{array}{rlrl} \Rightarrow & & 2 a e & =8,2 a=10 \\ \Rightarrow & 10 e & =8 \\ & & e & =\frac{4}{5} \\ \Rightarrow & b^{2} & =25 \quad 1-\frac{16}{25}=9 \\ \therefore & & \frac{x^{2}}{25}+\frac{y^{2}}{9} & =1 \end{array} $$

$w=2(\cos \theta+i \sin \theta)$

$\therefore \quad z=2(\cos \theta+i \sin \theta)-\frac{1}{2(\cos \theta+i \sin \theta)}$

$$ \begin{aligned} & =2(\cos \theta+i \sin \theta)-\frac{1}{2}(\cos \theta-i \sin \theta) \\ & =\frac{3}{2} \cos \theta+\frac{5}{2} i \sin \theta \end{aligned} $$

Let $\quad z=x+i y$

$\Rightarrow \quad x=\frac{3}{2} \cos \theta$ and $y=\frac{5}{2} \sin \theta$

$\Rightarrow \quad \frac{2 x^{2}}{3}+\frac{2 y}{5}^{2}=1$

$\Rightarrow \quad \frac{x^{2}}{9 / 4}+\frac{y^{2}}{25 / 4}=1$

$\therefore \quad e=\sqrt{1-\frac{9 / 4}{25 / 4}}=\frac{4}{5}$

D. Let $\quad w=\cos \theta+i \sin \theta$

Then, $\quad z=x+i y=\cos \theta+i \sin \theta+\frac{1}{\cos \theta+i \sin \theta}$

$$ =2 \cos \theta $$

$\Rightarrow \quad x=2 \cos \theta, y=0$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक