Complex Numbers 2 Question 24

25.

If $z _1=a+i b$ and $z _2=c+i d$ are complex numbers such that $\left|z _1\right|=\left|z _2\right|=1$ and $\operatorname{Re}\left(z _1 \bar{z} _2\right)=0$, then the pair of complex numbers $w _1=a+i c$ and $w _2=b+i d$ satisfies

(a) $\left|w _1\right|=1$

(b) $\left|w _2\right|=1$

(c) $\operatorname{Re}\left(w _1 \bar{w} _2\right)=0$

(d) None of these

$(1985,2 M)$

Show Answer

Answer:

Correct Answer: 25. (a,b,c)

Solution:

  1. Since, $z _1=a+i b$ and $z _2=c+i d$

$\Rightarrow\left|z _1\right|^{2}=a^{2}+b^{2}=1$ and $\left|z _2\right|^{2}=c^{2}+d^{2}=1$

$ \left[\because\left|z _1\right|=\left|z _2\right|=1\right] $

Also, $\operatorname{Re}\left(z _1 \bar{z} _2\right)=0 \quad \Rightarrow \quad a c+b d=0$

$ \Rightarrow \quad \frac{a}{b}=-\frac{d}{c}=\lambda $

From Eqs. (i) and (ii), $b^{2} \lambda^{2}+b^{2}=c^{2}+\lambda^{2} c^{2}$

$\Rightarrow \quad b^{2}=c^{2}$ and $a^{2}=d^{2}$

Also, given $w _1=a+i c$ and $w _2=b+i d$

Now, $\quad\left|w _1\right|=\sqrt{a^{2}+c^{2}}=\sqrt{a^{2}+b^{2}}=1$

$ \left|w _2\right|=\sqrt{b^{2}+d^{2}}=\sqrt{a^{2}+b^{2}}=1 $

and $\operatorname{Re}\left(w _1 \overline{w _2}\right)=a b+c d=(b \lambda) b+c(-\lambda c) \quad$ [from Eq. (i)]

$ =\lambda\left(b^{2}-c^{2}\right)=0 $



NCERT Chapter Video Solution

Dual Pane