Complex Numbers 2 Question 20

20.

The inequality $|z-4|<|z-2|$ represents the region given by

(1982, 2M)

(a) $\operatorname{Re}(z) \geq 0$

(b) $\operatorname{Re}(z)<0$

(c) $\operatorname{Re}(z)>0$

(d) None of these

Show Answer

Answer:

Correct Answer: 20. (d)

Solution:

  1. Given, $|z-4|<|z-2|$

Since, $\left|z-z _1\right|>\left|z-z _2\right|$ represents the region on right side of perpendicular bisector of $z _1$ and $z _2$.

$ \begin{array}{ll} \therefore & |z-2|>|z-4| \\ \Rightarrow & \operatorname{Re}(z)>3 \text { and } \operatorname{Im}(z) \in R \end{array} $



NCERT Chapter Video Solution

Dual Pane