Complex Numbers 2 Question 20

20. The inequality |z4|<|z2| represents the region given by

(1982, 2M)

(a) Re(z)0

(b) Re(z)<0

(c) Re(z)>0

(d) None of these

Show Answer

Answer:

Correct Answer: 20. (b)

Solution:

  1. Given, |z4|<|z2|

Since, |zz1|>|zz2| represents the region on right side of perpendicular bisector of z1 and z2.

|z2|>|z4|Re(z)>3 and Im(z)R

ω=1+i32 and ω2=1i32

Now, 3+i2=i1+i32=iω

 and 3i2=i1i32=iω2

z=(iω)5+(iω2)5=iω2+iω

=i(ωω2)=i(i3)=3

Re(z)<0 and lm(z)=0

Alternate Solution

We know that, z+z¯=2Re(z)

If

z=32+i25+32i25, then 

z is purely real. i.e. Im(z)=0



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक