Complex Numbers 1 Question 9

9.

The smallest positive integer $n$ for which $(\frac{1+i}{1-i})^n=1$, is

(a) 8

(b) 16

(c) 12

(d) None of these

$(1980,2 M)$

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. Since, $(\frac{1+i}{1-i})^{n}=1 \Rightarrow (\frac{1+i}{1-i} \times \frac{1+i}{1+i})^{n}=1$

$ \begin{aligned} \Rightarrow & & \frac{2 i^{n}}{2} & =1 \\ \Rightarrow & & i^{n} & =1 \end{aligned} $

The smallest positive integer $n$ for which $i^{n}=1$ is 4 .

$ \therefore \quad n=4 $



NCERT Chapter Video Solution

Dual Pane