Complex Numbers 1 Question 9

9. The smallest positive integer $n$ for which $\frac{1+i^{n}}{1-i}=1$, is

(a) 8

(b) 16

(c) 12

(d) None of these

$(1980,2 M)$

Objective Question II

(One or more than one correct option)

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. Since, $\frac{1+i}{1-i}^{n}=1 \Rightarrow \frac{1+i}{1-i} \times \frac{1+i}{1+i}^{n}=1$

$$ \begin{aligned} \Rightarrow & & \frac{2 i^{n}}{2} & =1 \\ \Rightarrow & & i^{n} & =1 \end{aligned} $$

The smallest positive integer $n$ for which $i^{n}=1$ is 4 .

$$ \therefore \quad n=4 $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक